Section 2.3

Elementary Signals

Version: 2016-01-25

æ.

< ロ > < 団 > < 巨 > < 巨 >

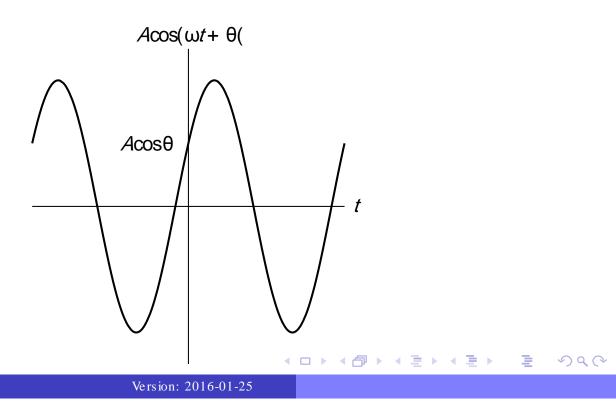
 $\mathcal{O}Q (\mathcal{O})$

• A (CT) real sinusoid is a function of the form

$$x(t) = A\cos(\omega t + \theta),$$

where A, ω , and θ are *real* constants.

- Such a function is periodic with *fundamental period* $T = \frac{2\pi}{|\omega|}$ and *fundamental frequency* $|\omega|$
- A real sinusoid has a plot resembling that shown below.



• A (CT) complex exponential is a function of the form

$$x(t) = A e^{\lambda t}$$

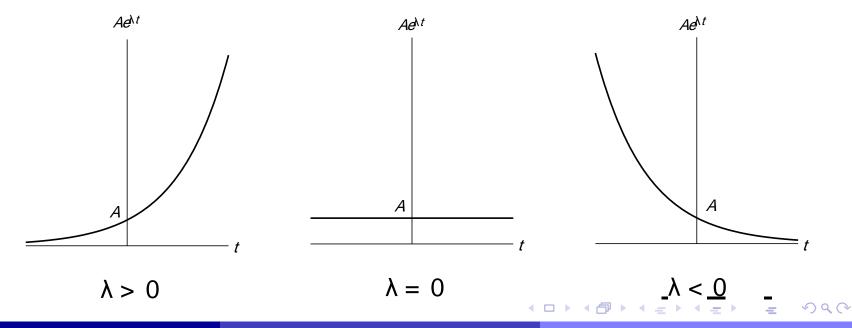
where A and λ are *complex* constants.

- A complex exponential can exhibit one of a number of *distinct modes of behavior*, depending on the values of its parameters A and λ .
- For example, as special cases, complex exponentials include real exponentials and complex sinusoids.

æ

 $\mathcal{I} \mathcal{Q} \mathcal{Q}$

- A real exponential is a special case of a complex exponential $x(t) = Ae^{\lambda t}$, where A and λ are restricted to be *real* numbers.
- A real exponential can exhibit one of *three distinct modes* of behavior, depending on the value of λ , as illustrated below.
- If $\lambda > 0$, x(t) increases exponentially as t increases (i.e., a growing exponential). If
- $\lambda < 0$, x(t) decreases exponentially as t increases (i.e., a decaying exponential). If λ • = 0, x(t) simply equals the constant A.



Version: 2016-01-25

- A complex sinusoid is a special case of a complex exponential $x(t) = Ae^{\lambda t}$, where A is complex and λ is purely imaginary (i.e., Re{ λ } = .(0
- That is, a (CT) complex sinusoid is a function of the form

$$x(t) = A e^{i\omega t}$$

where A is *complex* and ω is *real*.

• By expressing A in polar form as $A = |A| e^{i\theta}$ (where θ is real) and using Euler's relation, we can rewrite x(t) as

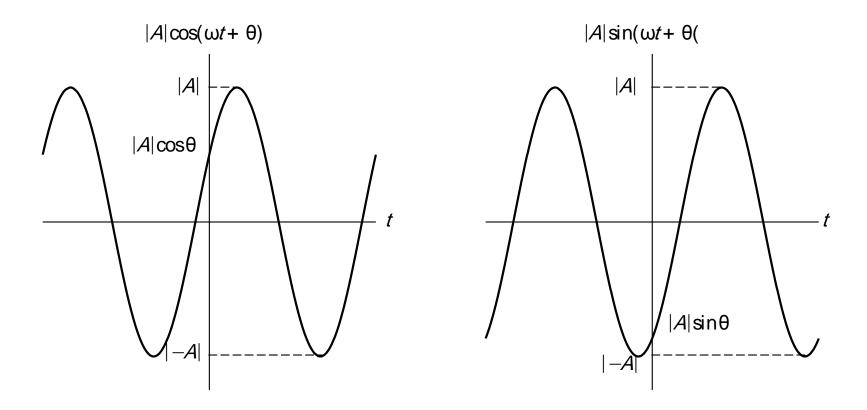
$$x(t) = |A| \cos(\omega t + \theta) + j |A| \sin(\omega t + \theta)$$

Ref x(t{(Im{ x(t{(

- Thus, $Re\{x\}$ and $Im\{x\}$ are the same except for a time shift.
- Also, X is periodic with fundamental period $T = \frac{2\pi}{|\omega|}$ and fundamental frequency $|\omega|$

SQ (~

• The graphs of $\operatorname{Re}\{x\}$ and $\operatorname{Im}\{x\}$ have the forms shown below.



< □ ▶ < 凸

Ð.

∢ ≣ ⊁

-

596

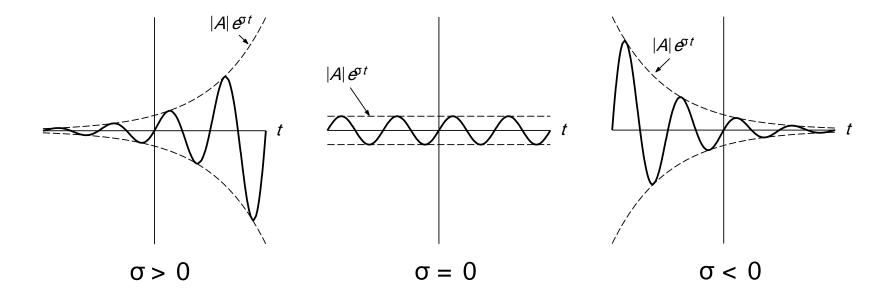
- In the most general case of a complex exponential $x(t) = Ae^{\lambda t}$, A and λ are both *complex*.
- Letting $A = |A| e^{i\theta}$ and $\lambda = \sigma + i\omega$ (where θ, σ , and ω are real), and using Euler's relation, we can rewrite x(t) as

$$x(t) = |A| e^{\sigma t} \cos(\omega t + \theta) + j |A| e^{\sigma t} \sin(\omega t + \theta)$$

$$Re_{\{x(t)\}} Im\{x(t)\}$$

- Thus, Re{ x} and Im{ x} are each the product of a real exponential and real sinusoid.
- One of *three distinct modes* of behavior is exhibited by x(t), depending on the value of σ .
- If $\sigma = 0$, Re{ x} and Im{ x} are *real sinusoids*
- If σ > 0, Re{ x} and Im{ x} are each the product of a real sinusoid and a growing real exponential.
- If σ < 0, Re{ x} and Im{ x} are each the product of a real sinusoid and a decaying real exponential.

• The *three modes of behavior* for $\text{Re}\{x\}$ and $\text{Im}\{x\}$ are illustrated below.



< ロ > < 団 > < 団 > < 団 > < 豆 > < 亘 > < 亘 < 三</p>

 $\mathcal{O}\mathcal{A}\mathcal{O}$

Singsoids Relationship Between Complex Exponentials and Real

 From Euler's relation, a complex sinusoid can be expressed as the sum of two real sinusoids as

$$Ae^{i\omega t} = A\cos\omega t + jA\sin\omega t$$
.

Moreover, a real sinusoid can be expressed as the sum of two complex sinusoids using the identities

$$A\cos(\omega t + \theta) = \frac{A}{2} e^{j(\omega t + \theta)} + e^{-j(\omega t + \theta)}$$
and
$$A\sin(\omega t + \theta) = \left(\frac{A}{2j} e^{j(\omega t + \theta)} - e^{-j(\omega t + \theta)}\right).$$

• Note that, above, we are simply *restating results* from the (appendix) material on complex analysis.

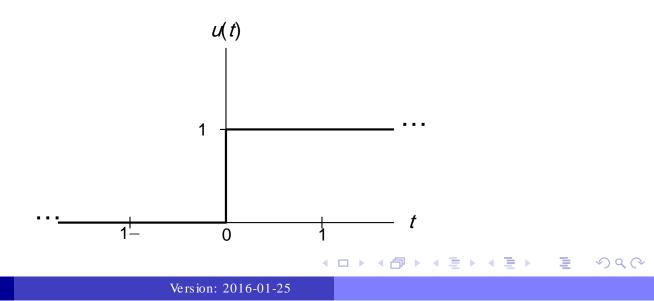
玊

 $\mathcal{A} \subset \mathcal{A}$

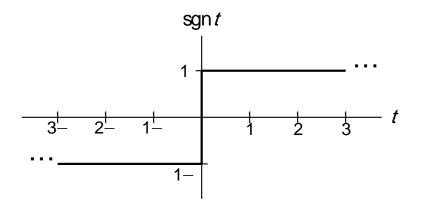
The unit-step function (also known as the Heaviside function), denoted
 U, is defined as

$$u(t) = \begin{array}{c} 1 & \text{if } t \ge 0 \\ 0 & \text{otherwise.} \end{array}$$

- Due to the manner in which U is used in practice, the actual Value of U(0) is unimportant. Sometimes values of 0 and 1 + 3 re also used for U(.0)
- A plot of this function is shown below.



- The signum function, denoted Sgn, is defined as $\begin{array}{l} \square \\ \square \\ 1 \\ \text{if } t > 0 \\ \text{Sgn} t = \begin{array}{l} \square \\ 0 \\ \square \\ -1 \\ \text{if } t < 0. \end{array}$
- From its definition, one can see that the signum function simply computes the sign of a number.
- A plot of this function is shown below.

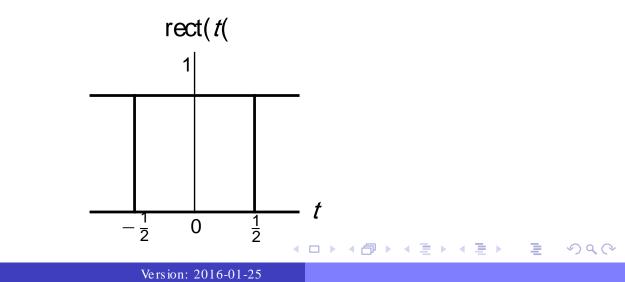


 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• The rectangular function (also called the unit-rectangular pulse function), denoted **rect**, is given by

rect(t) =
$$\begin{array}{c} 1 & \text{if } -\frac{1}{2} \leq t < \frac{1}{2} \\ 0 & \text{otherwise.} \end{array}$$

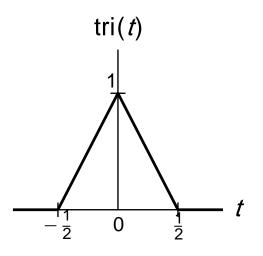
- Due to the manner in which the **rect** function is used in practice, the actual value of rect(t) at $t = \pm \frac{1}{2}$ is unimportant. Sometimes different values are used from those specified above.
- A plot of this function is shown below.



• The triangular function (also called the unit-triangular pulse function), denoted tri, is defined as

tri(
$$t$$
= ($\begin{array}{c} 1-2|t| & |t| \leq \frac{1}{2} \\ 0 & \text{otherwise.} \end{array}$

• A plot of this function is shown below.



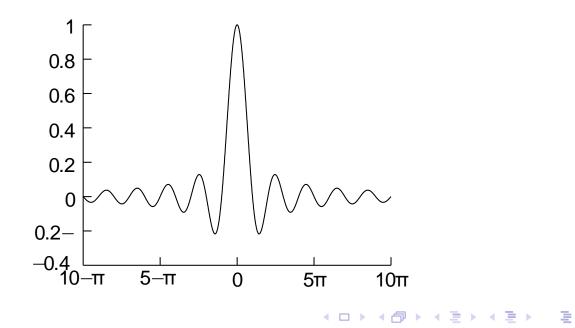
<ロ><日><日><日><日</p>

590

• The cardinal sine function, denoted SinC, is given by

$$\operatorname{sinc}(t) = \frac{\sin t}{t}.$$

- By l'Hopital's rule, sinc0 = .1
- A plot of this function for part of the real line is shown below. [Note that the oscillations in sinc(t) do not die out for finite t[.

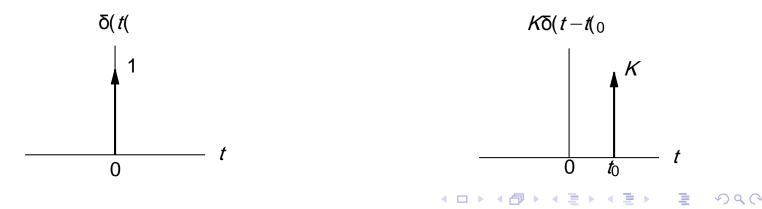


 $\mathcal{O} \mathcal{Q} \mathcal{O}$

The unit-impulse function (also known as the Dirac delta function or delta function), denoted δ, is defined by the following two properties:

$$\delta(t) = 0 \quad \text{for } t \neq 0 \quad \text{and}$$
$$\sum_{\infty}^{\infty} \delta(t) dt = 1.$$

- Technically, δ is not a function in the ordinary sense. Rather, it is what is known as a *generalized function*. Consequently, the δ function sometimes behaves in unusual ways.
- Graphically, the delta function is represented as shown below.



Version: 2016-01-25