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Elementary Signals  
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Real S inusoids  A (CT) real sinusoid is  a  function of the  form 
 

x(t) =  A cos(ωt +  θ), 
 

where  A, ω, and θ are  real constants. 

Such a  function is  periodic with fundamental period T =  2π and |ω| 

fundamental frequency |ω |.  

A real s inusoid has  a  plot resembling that shown below. 

A cos θ 
 
 
 

t 

A cos(ωt +  θ) 

Version: 2016-01-25 



Complex Exponentia ls  

A (CT) complex exponential is  a  function of the  form 
 
 

x(t) =  Aeλt  , 
 
 

where  A and λ are  complex constants . 
 

A complex exponentia l can exhibit one  of a  number of distinct modes of 

behavior, depending on the  values  of its  parameters  A and λ. 
 

For example, as  special cases, complex exponentials  include  real 

exponentia ls  and complex s inusoids . 
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Real Exponentia ls  
A real exponential is  a  special case  of a  complex exponentia l 

x(t) =  Aeλt , where  A and λ are  res tricted to be  real numbers . 

A real exponentia l can exhibit one  of three distinct modes of behavior, 

depending on the  value  of λ, as  illus tra ted below. 

If λ >  0, x(t) increases exponentially as  t increases  (i.e ., a  growing exponentia l). If 

λ <  0, x(t) decreases exponentia lly as  t increases  (i.e ., a  decaying exponentia l). If λ 

=  0, x(t) s imply equals  the  constant A. 
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Complex S inusoids  
A complex s inusoid is  a  special case  of a  complex exponentia l x(t) =  Aeλt , 

where  A is  complex and λ is  purely imaginary (i.e., Re{ λ}  =  0).  
 

That is , a  (CT) complex sinusoid is  a  function of the  form 
 
 

x(t) =  Ae jωt  , 
 
 

where  A is  complex and ω is  real. 
 

By express ing A in polar form as  A =  |A| e jθ  (where  θ is  real) and us ing 

Euler’s  re la tion, we can rewrite  x(t) as  
 
 

x(t) =  |A| cos(ωt +  θ) +  j |A| sin(ωt +  θ ) .  
  

Re 

 
x
 
(t )}  {           Im{ x(t )}  

Thus, Re{ x}  and Im{ x}  are  the  same except for a  time shift. 

Also, x is  periodic with fundamental period T =  2π and fundamental |ω| 

frequency |ω |.  
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Complex S inusoids  (Continued) 

− | A| 

The graphs  of Re{ x}  and Im{ x}  have the  forms shown below. 
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Genera l Complex Exponentia ls  In the  most general case  of a  complex exponentia l x(t) =  Aeλt , A and λ 

are  both complex. 

Letting A =  |A| e jθ  and λ =  σ +  jω (where  θ, σ, and ω are  real), and 

us ing Euler’s  re la tion, we can rewrite  x(t) as  
 

x(t) =  |A| eσt cos(ωt +  θ) +  j |A| eσt sin(ωt +  θ) . 
  

Re 

 
x
 
(t)}  {           Im{ x(t )}  

Thus, Re{ x}  and Im{ x}  are  each the  product of a  real exponential and 

real s inusoid. 

One of three distinct modes of behavior is  exhibited by x(t), depending on 

the  value  of σ. 

If σ =  0, Re{ x}  and Im{ x}  are  real sinusoids. 

If σ >  0, Re{ x}  and Im{ x}  are  each the  product of a real sinusoid and a 

growing real exponential. 

If σ <  0, Re{ x}  and Im{ x}  are  each the  product of a real sinusoid and a 

decaying real exponential. 
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Genera l Complex Exponentia ls  (Continued) 

t 

σ >  0 σ =  0 

The three modes of behavior for Re{ x}  and Im{ x}  are  illus trated below. 
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Rela t ionship Be tween Complex Exponentia ls  and Rea l S inusoids  
 
 
 
 

 

From Euler’s  re la tion, a  complex s inusoid can be  expressed as  the  sum of 

two real s inusoids  as  
 
 

Ae jωt  =  A cos ωt +  jA sin ωt. 
 
 

Moreover, a  real s inusoid can be  expressed as  the  sum of two complex 

s inusoids  us ing the  identities  

A cos(ωt +  θ) =  
A   

2 
e j (ωt+ θ) +  e− j (ωt+ θ) 

l  
and 

A sin(ωt +  θ ) =  
A    

2 j 
e j (ωt+ θ) − e− j (ωt+ θ) 

l  
.  

Note  that, above, we are  s imply restating results from the  (appendix) 

materia l on complex analys is . 
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Unit-S tep Function 
The unit-step function (a lso known as  the  Heaviside function), denoted 

u, is  defined as  

u(t) =  

 
1 if t ≥ 0 

 

0 otherwise . 

Due to the  manner in which u is  used in practice, the  actual value of u( 0)  

is  unimportant.  Sometimes  values  of 0 and  1  are  a lso used for u( 0).  
2 

A plot of this  function is  shown below. 
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Signum Function 
The signum function, denoted sgn, is  defined as  

sgn t =  

1  

−1 

if t >  0 
 

0 if t =  0 
 

if t <  0. 

From its  definition, one  can see  that the  s ignum function s imply computes  

the  sign of a  number. 
 

A plot of this  function is  shown below. 
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Rectangula r  Function The rectangular  function (a lso called the  unit-rectangular pulse  

function), denoted rect, is  given by 

rect(t) =  

 
1  if − 1  ≤ t <  1 

2 2 

0 otherwise . 

Due to the  manner in which the  rect function is  used in practice, the  actual 

value of rect(t) at t =  ± 1  is  unimportant.  Sometimes  different values  are  
2 

used from those  specified above . 
 

A plot of this  function is  shown below. 
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Triangula r  Function 

The tr iangular  function (a lso called the  unit-triangular pulse  function), 

denoted tri, is  defined as  

tri(t ) =  

 
1 − 2 |t| 

0 

|t| ≤ 1 
2 

otherwise . 

A plot of this  function is  shown below. 
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Cardina l S ine  Function 
The cardinal sine function, denoted sinc, is  given by 

sinc(t) =  
sin t 

t 
. 

By l’Hopital’s  rule, sinc 0 =  1.  
 

A plot of this  function for part of the  real line  is  shown below. 

[Note  that the  oscilla tions  in sinc(t) do not die  out for finite  t .]  
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Unit-Impulse  Function 
The unit-impulse function (a lso known as  the  Dirac delta function or 

delta function), denoted δ, is  defined by the  following two properties : 
 
 

δ(t) =  0 for t =j 0 and 
 { ∞  

 

 
 

−∞  
δ(t)dt =  1. 

Technically, δ is  not a  function in the  ordinary sense. Rather, it is  what is  

known as  a  generalized function. Consequently, the  δ function 

sometimes  behaves  in unusual ways. 
 

Graphically, the  delta  function is  represented as  shown below. 
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